Jump to content

Petits problèmes de math


Recommended Posts

  • 2 weeks later...
Le 22/07/2018 à 08:45, Mégille a dit :

A propos de cette Cohl Furey et de ses octonions... il y a un type qui n'a pas l'air d'en penser beaucoup de bien https://motls.blogspot.com/2018/07/cohl-furey-understands-neither-field.html

Dommage... je trouvais l'idée super cool, d'autant plus venant d'une belle femme badass pratiquant le MMA.

 

Merci pour le lien. À propos, tu connais un petit peu l'auteur ? Il y a des gens qui n'ont pas l'air d'en penser beaucoup de bien :

 

Lubos Motl is right

Lubos Motl’s apology

Censored Comments From the Reference Frame

 

Singulièrement, il n'a rien publié - académiquement - depuis plus de dix ans https://scholar.google.com/citations?user=zz-EcVUAAAAJ&hl=en.

 

Quoi qu'il en soit, ce genre de problème dépasse de très loin mes compétences...

 

Enfin, pour un éclaircissement - purement mathématique, je suggère la lecture de cette excellente page de vulgarisation : les octonions sont-ils intéressants ?

 

  • Yea 1
Link to post
Le 23/07/2018 à 08:31, Rübezahl a dit :

Des prétendues soluces aux incompréhensions du monde physique avec des espaces de dimensions N.

N=8,9,10, .... 27

il y en a une palanquée.

Ce n'est pas évident de distinguer le farfelu des choses sérieuses.

 

Pour le coup, c'est l'auteur de la critique postée par @Mégille qui est un fanatique de la théorie des cordes...

Link to post
Il y a 4 heures, Freezbee a dit :

Pour le coup, c'est l'auteur de la critique postée par @Mégille qui est un fanatique de la théorie des cordes...

Chaque tenant d'une théorie machin à p-dimensions pense du mal des théories à q-dimensions pour q!=p.

 

La théorie des cordes, ça fait aussi 30 ans ou plus qu'on en cause ... et, sauf erreur, pas grand chose de concret n'est pour l'instant sorti.

 

  • Yea 1
Link to post

On m'en a raconté une pas mal la dernière fois :

Il était une fois un petit village isolé, dans la montagne. Un dimanche, comme tous les dimanches, les villageois se rendent à l'église. Cependant, le curé ne commence pas directement sa messe comme d'habitude. Au lieu de cela, il demande à toutes les femmes de sortir de l'église. Les femmes, intriguées mais obéissantes, sortent. Puis il s'adresse aux hommes en leur disant :

" Mes bien chers frères... le pêché rôde parmi nous. Je sais, de source sûre, qu'il y a, parmi nous, au moins une femme infidèle à son mari. En tant qu'homme de Dieu, je ne peux laisser pareille infamie continuer à corrompre ce bas-monde. Cependant, ma conscience m'interdit de révéler le ou les noms de la ou des vile(s) pêcheresse(s). Je vous laisse donc le soin de dénouer seuls cette sombre affaire. A la fin de la messe, je distribuerai à chacun de vous un bout de papier. Sur ce papier figurera un nombre : le nombre total de femmes infidèles dans ce village, moins la vôtre, si c'est votre femme et que vous êtes l'homme trompé. Vous devez garder ce papier pour vous et ne communiquer ce nombre à personne. L'homme qui conclura que sa femme est coupable d'adultère aura la permission de l'exécuter, à minuit obligatoirement, d'un coup de fusil. Sur ce, mes bien chers frères, que Dieu soit avec vous et allez en paix."

Après la messe, chacun vaque à ses affaires. Le soir vient, la nuit tombe, chacun rentre chez soi.

Minuit sonne. Aucun coup de fusil. Le lundi matin, tous les villageois sont là. Il ne manque personne.

La deuxième nuit arrive. Minuit sonne. Toujours rien. Le lendemain, le mystère demeure.

La troisième nuit arrive. Les coups de minuit sont sur le point de sonner... Quand tout d'un coup, un ou plusieurs coups de fusil retentissent. 

Combien y a-t-il eu de coups de fusil ?

Link to post
il y a une heure, Harfang a dit :

Combien y a-t-il eu de coups de fusil ?

Trois

Révélation

Si une seule femme était adultère, quelqu'un aurait eu un papier avec marqué "0" et les autres "1" et sachant qu'au moins une femme est adultère aurait deviné qu'il s'agissait de la sienne.

Si 2 femmes étaient adultères, deux personnes auraient eu un papier noté "1" et les autres "2". Vu que personne n'a tiré la première nuit, ils en auraient déduit que personne n'avait le "0", donc que leurs femmes étaient adultères. Il y aurait eu 2 coups de feu.

La troisième nuit, les trois hommes avec marqué "2" sur leur papier on tué leur femme.

 

Link to post
  • 2 weeks later...
  • 5 weeks later...

Un peu d'arithmétique:

"Donner le résultat de l'addition des 100 premiers nombres naturels par une méthode n'utilisant que deux opérations traditionnelles et deux seulement (quantitativement et qualitativement)".

 

 

Link to post
1 hour ago, Reykjavik said:

Un peu d'arithmétique:

"Donner le résultat de l'addition des 100 premiers nombres naturels par une méthode n'utilisant que deux opérations traditionnelles et deux seulement (quantitativement et qualitativement)".

 

J'aurais bien fait le classique 100*(1+100)/2 mais j'ai 3 opérations et 2 opérateurs là.

Link to post

Je crois que Gauss avait trouvé la réponse de celle là à l'âge de 7 ans. (l'instit s'était contenté de donner une très longue addition aux enfants pour avoir la paix pendant un moment, et voilà qu'un petit em****deur trouve la réponse en 1 ou 2 secondes !)

  • Yea 1
Link to post
27 minutes ago, Mister_Bretzel said:

 

J'aurais bien fait le classique 100*(1+100)/2 mais j'ai 3 opérations et 2 opérateurs là.

ben pourquoi tu fais le 100+1  ?  100 * 101 / 2 et ça marche en plus avec l'explication originale de gauss : je prend les deux plus grands et petits nombres 100 et 1 ça fait pareil que les deux suivants 2 et 99 (etc. ) et je peux le faire 100/2 fois. 

  • Yea 1
Link to post
il y a 29 minutes, Mister_Bretzel a dit :

 

J'aurais bien fait le classique 100*(1+100)/2 mais j'ai 3 opérations et 2 opérateurs là.

En fait, selon, José Monoz Santonja, en 1787 alors qu'il n'a que dix ans, Gauss répondu en quelques secondes à ce problème.

La méthode utilisée fut la suivante:

Il compris intuitivement qu'en visualisant les nombres ordonnés de 1 à 100 sur une ligne et de 100 à 1 sur la ligne d'en dessous, il obtenait toujours 101 de l'addition des éléments supérieurs et inférieurs:

1          2          3.................98     99     100

100    99       98................. 3        2         1

 

Puisqu'il y a 100 éléments additionnés la somme de ces deux séries de nombres sera 100X101 et puisqu'il y a deux additions, la somme des 100 premiers nombres sera: 100X101/2.

 

Ou plus rapidement, ce qui semble plutôt avoir été le cheminement mental de Gauss, considérons 50 paires de nombres ayant pour somme 101, soit 50X101. 1+100, 2+99..............99+2, 100+1.

 

Link to post
38 minutes ago, Kassad said:

ben pourquoi tu fais le 100+1  ?  100 * 101 / 2 et ça marche en plus avec l'explication originale de gauss : je prend les deux plus grands et petits nombres 100 et 1 ça fait pareil que les deux suivants 2 et 99 (etc. ) et je peux le faire 100/2 fois. 

 

Parce que pour avoir 101, processus est d'ajouter le premier 1 et le dernier terme 100 de la série. Il y a donc une addition qui se cache dessous : première opération.

On multiplie le tout par le nombre de termes, c'est une seconde opération. Puis on divise par deux, c'est une troisième opération.

Link to post
  • 2 weeks later...

Michael Atiyah, un vénérable mathématicien (médaille Fields, prix Abel) affirme avoir trouvé une démonstration de l'hypothèse de Riemann. :blink:

 

https://www.newscientist.com/article/2180406-famed-mathematician-claims-proof-of-160-year-old-riemann-hypothesis/

 

Par surcroît, cette démonstration serait « simple » d'après lui et je dois dire que cette précision tempère quelque peu mon enthousiasme : l'intérêt de la résolution de ce genre de problèmes réside souvent davantage dans la création de nouveaux outils mathématiques que dans le fait d'avoir la preuve d'un énoncé dont on se doute déjà qu'il est vrai.

 

Évidemment, personne n'a fait de commentaire pour l'instant et le doute reste de mise, d'autant que le mathématicien approche de ses 90 ans. En outre, la même annonce sortant de la bouche d'un mathématicien moins connu susciterait probablement l'incrédulité...

 

Quoi qu'il en soit, Michael Atiyah présentera sa démonstration lundi prochain à Heidelberg.

  • Yea 1
Link to post
13 minutes ago, Rübezahl said:

... j'espère que ça va pas nous casser trop de crypto (?).

Non à la limite ça pourrait changer des choses pour les tests de primalité (mais ça on sait déjà que c'est dans P) mais pas pour la factorisation.

Link to post

Je viens de tomber sur deux commentaires de Tim Gowers au sujet de l'annonce. Il fait allusion à une démonstration présentée par Atiyah à Heidelberg l'année dernière et réfutée depuis...

 

Citation

Timothy Gowers
September 23rd, 2018

Serre posted a comment on Google Plus to say that he had seen the supposed proof of the odd-order theorem and it is completely wrong, which would explain why we’ve heard so little about it since the previous flurry of nonagenarian-solves-major-problem articles.

 

Citation

Timothy Gowers
September 23rd, 2018

In case of misunderstanding, I’m not criticizing you for this post — I was alluding to breathless articles on certain science-related websites, and perhaps even newspapers, that gave the impression that Atiyah’s argument had a good chance of being correct.

 

Source : https://aperiodical.com/2018/09/michael-atiyah-claims-proof-of-riemann-hypothesis/

 

Link to post
  • 1 month later...

Un petit problème mignon comme tout :

 

Citation

Montrer qu'il existe dans le plan un hexagone convexe tel que :

1 - ses angles intérieurs soient égaux

2 - ses côtés mesurent 1, 2, 3, 4, 5, 6 (dans un ordre quelconque)

 

Link to post
23 hours ago, Freezbee said:

Un petit problème mignon comme tout :

 

J'ai trouvé une solution en essayant différents ordres possibles pour 1,2,3,4,5,6 (il n'y en a que 5! si on fixe le 1 au début)

et en faisant l'hypothèse que les angles internes ont la valeur de ceux d'un hexagone régulier

J'ai trouvé



1,4,5,2,3,6

comme solution qui fonctionne et que je peux vérifier analytiquement en donnant des coordonnées aux différents points, mais j'ai peut-être manqué une solution plus élégante.

Link to post
il y a 27 minutes, Solomos a dit :

 

J'ai trouvé une solution en essayant différents ordres possibles pour 1,2,3,4,5,6 (il n'y en a que 5! si on fixe le 1 au début)

et en faisant l'hypothèse que les angles internes ont la valeur de ceux d'un hexagone régulier

J'ai trouvé

 

  Masquer le contenu

 

 


1,4,5,2,3,6
 

 

comme solution qui fonctionne et que je peux vérifier analytiquement en donnant des coordonnées aux différents points, mais j'ai peut-être manqué une solution plus élégante.

Je pense qu'on peut facilement mettre en équation les coordonnées, et donc les longueurs des côtés et les angles. Après je n'ai pas essayé, pas trop le temps pour le moment.

Link to post
Il y a 2 heures, Solomos a dit :

comme solution qui fonctionne et que je peux vérifier analytiquement en donnant des coordonnées aux différents points, mais j'ai peut-être manqué une solution plus élégante.

 

En effet, il y a une preuve visuelle. Il suffit de remarquer qu'on construit en fait un triangle équilatéral :

 

Hexa123456.png

  • Yea 2
Link to post

Ça manque de sinus et cosinus... La solution est unique (enfin le quadrupler au dessus je me comprends)

 

(on devrait arriver à un système de 6 équations de degré 2, donc on peut imaginer plusieurs solutions ; quoi que la condition sur la convexité doit limiter l’espace).

Link to post

Je ne comprends pas l'histoire du système de 6 équations, pour moi il faut juste tester des arrangements de 1, 2, 3, 4, 5, et 6.

Je les saisis dans les cellules de A9 à C10, je calcule les coordonnées de mes points en construisant mon hexagone point par point et je teste si la distance entre mon dernier point et mon premier est bien égale à la valeur que je n'ai pas utilisée pour construire mes 5 premiers segments. (c'est le 6 qui est calculé dans la cellule L14)

 

maths.jpg

Link to post

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...