Aller au contenu

Coronavirus : publications scientifiques, cartes, statistiques, essais cliniques etc.


Freezbee

Messages recommandés

Posté

Un preprint a été déposé sur medRXiv :

 

  Citation

Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions

 

This article is a preprint and has not been peer-reviewed [what does this mean?]. It reports new medical research that has yet to be evaluated and so should not be used to guide clinical practice.

 

Abstract

 

In December 2019, a novel coronavirus (2019-nCoV) is thought to have emerged into the human population in Wuhan, China. The number of identified cases in Wuhan has increased rapidly since, and cases have been identified in other Chinese cities and other countries (as of 23 January 2020).

 

We fitted a transmission model to reported case information up to 21 January to estimate key epidemiological measures, and to predict the possible course of the epidemic, as the potential impact of travel restrictions into and from Wuhan.

 

We estimate the basic reproduction number of the infection (R_0) to be 3.8 (95% confidence interval, 3.6-4.0), indicating that 72-75% of transmissions must be prevented by control measures for infections to stop increasing.

 

We estimate that only 5.1% (95%CI, 4.8-5.5) of infections in Wuhan are identified, and by 21 January a total of 11,341 people (prediction interval, 9,217-14,245) had been infected in Wuhan since the start of the year.

 

Should the epidemic continue unabated in Wuhan, we predict the epidemic in Wuhan will be substantially larger by 4 February (191,529 infections; prediction interval, 132,751-273,649), infection will be established in other Chinese cities, and importations to other countries will be more frequent.

 

Our model suggests that travel restrictions from and to Wuhan city are unlikely to be effective in halting transmission across China; with a 99% effective reduction in travel, the size of the epidemic outside of Wuhan may only be reduced by 24.9% on 4 February.

 

Our findings are critically dependent on the assumptions underpinning our model, and the timing and reporting of confirmed cases, and there is considerable uncertainty associated with the outbreak at this early stage.

 

With these caveats in mind, our work suggests that a basic reproductive number for this 2019-nCoV outbreak is higher compared to other emergent coronaviruses, suggesting that containment or control of this pathogen may be substantially more difficult.

Expand  

 

Profil de l'auteur : https://scholar.google.com/citations?user=0kgrbMEAAAAJ&hl=en&oi=ao

Posté
  Citation

Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

January 29, 2020

 

Background

 

The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP.

 

Methods

 

We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number.

 

Results

 

Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9).

 

Conclusions

 

On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)

Expand  

 

  • 4 weeks later...
Posté

 

  Le 25/02/2020 à 13:11, Rincevent a dit :

Et sinon, c'est confirmé que la chloroquine marche contre ce virus, ou pas ?

Expand  

 

Je viens justement de trouver ça, via Twitter :

 

  Citation

Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies.
Gao J1, Tian Z2, Yang X2.

 

Abstract

 

The coronavirus disease 2019 (COVID-19) virus is spreading rapidly, and scientists are endeavoring to discover drugs for its efficacious treatment in China. Chloroquine phosphate, an old drug for treatment of malaria, is shown to have apparent efficacy and acceptable safety against COVID-19 associated pneumonia in multicenter clinical trials conducted in China. The drug is recommended to be included in the next version of the Guidelines for the Prevention, Diagnosis, and Treatment of Pneumonia Caused by COVID-19 issued by the National Health Commission of the People's Republic of China for treatment of COVID-19 infection in larger populations in the future.

Expand  

 

Voir aussi : Landscape analysis of therapeutics as 17 February 2020

Posté

Une étude détaillant le tableau clinique de COVID-19 vient de sortir dans le New England Journal of Medicine :

 

  Citation

Clinical Characteristics of Coronavirus Disease 2019 in China

 

Abstract

 

Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients.

 

We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death.

 

The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission.

 

During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)

Expand  

 

  Citation

In early December 2019, the first pneumonia cases of unknown origin were identified in Wuhan, the capital city of Hubei province.1 The pathogen has been identified as a novel enveloped RNA betacoronavirus2 that has currently been named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has a phylogenetic similarity to SARS-CoV.3 Patients with the infection have been documented both in hospitals and in family settings.4-8

 

The World Health Organization (WHO) has recently declared coronavirus disease 2019 (Covid-19) a public health emergency of international concern.9 As of February 25, 2020, a total of 81,109 laboratory-confirmed cases had been documented globally.5,6,9-11 In recent studies, the severity of some cases of Covid-19 mimicked that of SARS-CoV.1,12,13 Given the rapid spread of Covid-19, we determined that an updated analysis of cases throughout China might help identify the defining clinical characteristics and severity of the disease. Here, we describe the results of our analysis of the clinical characteristics of Covid-19 in a selected cohort of patients throughout China.

 

Methods

 

  Révéler le contenu masqué

 

Results

 

  Révéler le contenu masqué

 

Discussion

 

  Révéler le contenu masqué

 

Expand  

 

TLDR : l'étude porte sur 1099 patients chinois suivis jusqu'au 29/01/20. Les résultats sont détaillés dans ce tableau (note : primary composite end point correspond à l'admission en soins intensifs, l'utilisation d'un respirateur ou le décès) :

 

nejmoa2002032-t1.jpg

 

En résumé :

 

- les plus de 50 ans sont les plus touchés (scoop)

- l'âge médian est 47 ans. Les enfants ne sont pratiquement pas malades, les femmes un peu moins que les hommes.

- le tabac accroît le risque de complications

- la période d'incubation moyenne est de 4 jours

- 44% avaient de la fièvre mais la plupart ne dépassaient pas 37,5° lors de leur admission

- les principaux symptômes sont : toux (68%), sécrétions (34%), épuisement (38%), souffle court (19%). Quelquefois des frissons et/ou des céphalées.

- la majorité des cas graves avait des antécédents, en particulier le diabète (et dans une moindre mesure l'hypertension).

  • Yea 1
  • Post de référence 2
Posté

Traitements et issues :

 

nejmoa2002032-t3.jpg

 

- les patients ont développé une pneumonie (91% des cas) en moyenne 3 jours après l'apparition des symptômes.

- la durée d'hospitalisation moyenne était de 12 jours

- 58% ont été mis sous antibios, 6% sous un respirateur artificiel

- seulement 15 décès (<1.5%)

  • Yea 1
  • Post de référence 2
Posté

Une intéressante étude sur la dispersion du taux de reproduction de base qui a une connexion avec la loi de Pareto: https://hopkinsidd.github.io/nCoV-Sandbox/DispersionExploration.html

en gros tout le monde ne contamine pas autant de gens et seule une minorité de contaminés est responsable de la contamination ce qui fait qu'en s'attaquant à 20% des causes, on résout 80% du problème:

  Citation

(A) onward transmission of the virus is less likely outside of China, presumably due to case finding paired with isolation and quarantine, i.e. the effective reproductive number Re is reduced; or (B) transmission of COVID-19 is in general overdispersed, i.e., the majority of transmission is due to a few superspreading events, while the vast majority of infected individuals do not transmit the virus. Perhaps most likely is that we are seeing some combination of these two effects.

We then find the optimal dispersion parameter, θ, that best makes each assumed simulated data set consistent with a random value of Re drawn from a plausible range (0.1 - 3). Individual variation in infectiousness implies outbreaks are rarer but more explosive. Interpreting the θ parameter is eased by framing it in terms of the fraction of individuals responsible for 80% of onward transmission (by analogy with the 20/80 rule).

This suggests we should be cautious about assuming the relative lack of COVID-19 transmission outside of China is the result of effective control measures, or some other fundamental difference in COVID-19 transmission outside of Wuhan (and China more broadly).

Expand  

La mise à jour des données déforme un peu la loi des 80/20 (vers 80/10).

  • Yea 1
Posté

@Tipiak Effectivement, il est tentant de prendre la courbe de l'épidémie en Chine et de la calquer en Europe en l'ajustant à la population. Néanmoins, il y a un écueil : les mesures prises par les autorités chinoises ont été précoces et extrêmement draconiennes. Par exemple, la province de Hubei (57 millions de personnes) a été placée en quarantaine le 23/01 alors qu'il y avait 550 cas en Chine (source). Plusieurs pays ont dépassé ce stade (Japon, Corée du Sud, Italie, Iran, peut-être les États-Unis si des cas sont passés sous le radar) et leur population n'est pas confinée. À mon avis, rien ne permet d'affirmer que tout va se passer comme en Chine. Quant à la charge des hôpitaux, je n'en ai pas la moindre idée... le personnel hospitalier se plaint déjà d'être en sous-effectif.

 

Autre chose, comme @Vilfredo Pareto le souligne dans son message : s'il y a des superspreaders qu'on ne bloque pas à temps cela change aussi la donne.

  • Yea 1
Posté

https://www.sciencesetavenir.fr/sante/coronavirus-contamines-decedes-ou-gueris-comptabilises-sur-une-carte_141244

  Citation

Un site actualise chaque jour le nombre de cas de coronavirus à travers le monde. Il comptabilise aussi les personnes décédées ainsi que les personnes guéries.

 

 

Un site comptabilise le nombre de personnes contaminées, décédées et guéries du coronavirus 2019n-CoV.

JOHN HOPKINS

Le bilan de l'épidémie du coronavirus 2019n-CoV évolue sans arrêt. À l'heure où cet article est écrit, on compte plus de 80.000 cas et plus de 2.700 décès [bilan daté du 26 février à 11h45]. Pour avoir toute la situation sous les yeux, l'Université Johns Hopkins, plus précisément le Center for systems science and engineering (CSSE) a mis au point un site internet qui dénombre en direct le nombre de cas de contamination, de décès mais aussi de guérisons à travers le monde. Sous forme d'un tableau de bord, le site permet de comprendre la situation en un coup d'œil. 

 

Un décompte ville par ville des cas de coronavirus

Le tableau de bord comprend une carte qui permet de voir continent par continent, les pays et même les villes qui ont été touchées. Il propose aussi une courbe sur l'évolution de la situation depuis le 20 janvier 2020. Sur une note plus positive, il décompte aussi, en vert, le nombre de personnes qui sont officiellement guéries du coronavirus à travers le monde. Sur des colonnes de part et d'autres de la carte, les décès, contaminations et guérisons sont détaillées ville par ville à travers la planète

Expand  

 

Et le site:

https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

Posté
  Le 02/03/2020 à 08:43, Nick de Cusa a dit :

surprenant ; demande fort d'être recoupé et vérifié

Expand  

 

Intéressant. Au sujet du recoupement, il y a ce preprint :

 

  Citation

The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes

Posted January 31, 2020

 

Abstract

 

Since December 2019, a newly identified coronavirus (2019 novel coronavirus, 2019-nCov) is causing outbreak of pneumonia in one of largest cities, Wuhan, in Hubei province of China and has draw significant public health attention. The same as severe acute respiratory syndrome coronavirus (SARS-CoV), 2019-nCov enters into host cells via cell receptor angiotensin converting enzyme II (ACE2). In order to dissect the ACE2-expressing cell composition and proportion and explore a potential route of the 2019-nCov infection in digestive system infection, 4 datasets with single-cell transcriptomes of lung, esophagus, gastric, ileum and colon were analyzed. The data showed that ACE2 was not only highly expressed in the lung AT2 cells, esophagus upper and stratified epithelial cells but also in absorptive enterocytes from ileum and colon. These results indicated along with respiratory systems, digestive system is a potential routes for 2019-nCov infection. In conclusion, this study has provided the bioinformatics evidence of the potential route for infection of 2019-nCov in digestive system along with respiratory tract and may have significant impact for our healthy policy setting regards to prevention of 2019-nCoV infection.

Expand  

 

Cet article :

 

  Citation

Whopping big viruses prey on human gut bacteria

January 28, 2019

 

Viruses plague bacteria just as viruses like influenza plague humans.

 

Some of the largest of these so-called bacteriophages have now been found in the human gut, where they periodically devastate bacteria just as seasonal outbreaks of flu lay humans low, according to a new study led by UC Berkeley scientists.

Expand  

 

Et j'ai l'impression que c'est cet auteur qui en parle : https://scholar.google.com/citations?hl=en&user=6ZmR8DsAAAAJ&view_op=list_works&sortby=pubdate

 

Il est bioinformaticien à UC Davis. Voici ce qu'il écrit sur Twitter :

 

 

Et voici ses articles (non publiés pour l'instant) :

 

  Citation

The 2019 Wuhan outbreak could be caused by the bacteria Prevotella, which is aided by the coronavirus, possibly to adhere to epithelial cells-Prevotella is present in huge…

 
Authors: Sandeep Chakraborty
Publication date: 2020/2
Publisher: OSF Preprints
 
Description
 
A hitherto unknown cause of the Wuhan coronavirus outbreak [1–3] is reported here-a bacteria from the Prevotella genus. The number of Wuhan coronavirus deaths in mainland China has overtaken the SARS epidemic in the country. The high mortality is being caused by targeting only the virus (which is also present). This is a two pronged attack, as previously noted in ‘infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells ‘[6]. Prevotella is a well known pathogen, and can induce ‘Severe Bacteremic Pneumococcal Pneumonia in Mice with Upregulated Platelet-Activating Factor Receptor Expression’[7]. The RNA-seq data from Wuhan, China (PRJNA603194) has millions of reads of Prevotella proteins, and a few thousands from 2019-nCoV (Table 1). Similarly, the DNA sequences (PRJNA601630) of 6 patients from the same family in Hong Kong [3] shows significant presence of this bacteria. These sequences can be found at SI: China. RNA-seq/SampleSequences. fa (n= 480K) and SI: HongKong/ALLsequences. fa (n= 50k). Finally, the expression levels (Table 2) shows that the elongation factor Tu is the most expressed.‘Elon-gation factor Tu (Tuf) is a new virulence factor of Streptococcus pneumoniae that binds human complement factors, aids in immune evasion and host tissue invasion’[8]. These are the only two studies I could find. Detection of the Prevotella in other samples will add more credence to this theory. Detection of the nCoV can be made very specific by looking for a 500bp in the spike protein [4], which would be a good candidate for vaccine development, protein-inhibition and diagnosis …
Expand  

 

  Citation

The Wuhan coronavirus has integrated in Prevotella, which possibly causes the observed extreme virulence-as sequencing data from 2 different studies in China and Hong-Kong…

 
Authors: Sandeep Chakraborty
Publication date: 2020/2
Publisher: OSF Preprints
 
Description
 
The death toll from the coronavirus outbreak originating in Wuhan (nCov [1–3]) has not abated, rising to 490, more than deaths in SARS outbreak of 2002-2003 in mainland China [4]. Previously, the existence of Prevotella and nCoV reads in copious amounts in sequencing data from Wuhan, China (PRJNA603194) and from sequences of 6 patients from the same family in Hong Kong [3] was established [5]. This also showed elevated levels of the virulence elongation factor Tu [6]. Here, I show that nCoV has integrated in the Prevotella genome, which interestingly has two chromosomes (https://www. ncbi. nlm. nih. gov/assembly/GCA 002849795.1),
Expand  

 

  Citation
 
Authors: Sandeep Chakraborty
Publication date: 2020/2
Publisher: OSF Preprints
 
Description
 
The Wuhan outbreak is widely assumed to be caused by a coronavirus [1, 2]. I have reported the presence of Prevotella in all three available sequencing data sets till date [3]-2 from China [4, 5], and one from Hong-Kong [6]. SI Tables in the paper submitted data shows the abundance of the bacteria, but there is mention of this in the paper [4]. Similarly, another paper from China does not report Prevotella among the metagenomic bacteria, but it is clearly present [5]. But the biggest proof that this is the cause of outbreak is the integration of the nCov and Prevotella, at the exact same place, from data in China and Hong-Kong [7]. And this is exactly the reason for the very high false negatives. We are looking for RNA (see the CDC test details given below)-which will be detected when the bacteria makes RNA out of the regions where the nCoV is, and will be high only when the bacterial concentration is sufficiently high. But, then it is too late. Whistle blower Dr Li Wenliang, who tragically passed away, took 20 days for a+ ve nCoV test [8].
Expand  

 

  Citation
 
Authors: Sandeep Chakraborty
Publication date: 2020/2
Publisher: OSF Preprints
 
Description
 
I have hypothesized based on sequencing data-two from China [1, 2], and one from Hong-Kong [3]-that the SARS-CoV-2 has integrated in the Prevotella genome [4, 4, 5]. The only fly in the ointment in this theory is chimeric reads arising from 16S integrations [6]. These chimeric reads in that region, although some of the are within proteins (SI. plasmid: chemeric. inprotein. fa). Apart from this, this hypothesis (a chimeric bacteria/virus) explains many of the intriguing observations-the extremely high false negatives (this is now DNA, while we are looking for RNA)[7, 8], high incubation periods [9], abdominal problems presenting before respiratory problems [10]. All these, taken one-by-one, probably happen in many viral diseases. But the combination of all observations strongly indicates this is a bacteria+ virus. Here, I report plasmid reads encoding β-lactamases in patient sequencing data from China [2] and Hong-Kong [3]. It is not there in the other Chinese study [1]. It is a distant possibility that these reads are from bacteria, given the high homology to plasmids (Fig 1). The origin of these reads, very unlikely to be contamination, in two different geographical locations needs serious investigation. It might also help in choosing the anti-biotics being prescribed. These sequences can be obtained from SI. plasmid/Study2. HK. blase. fa (N= 62) and SI. plasmid/Study3. China. blase. fa (N= 35).
Expand  

 

  • Yea 1
Posté
  Le 01/03/2020 à 19:47, Alchimi a dit :
Expand  

 

C'est le site le plus consulté par les personnes qui s'intéressent à l'épidémie et, je crois, le premier de la sorte mis en ligne.

Pour ceux que ça intéresse, il y en d'autres :

 

Celui de l'Université de Washington permet de suivre l'évolution pays par pays :

 

Screenshot-from-2020-03-02-13-04-30.png

  • 2 weeks later...
Posté

First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA

 

  Citation

Background

 

Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first detected in China in December, 2019. In January, 2020, state, local, and federal public health agencies investigated the first case of COVID-19 in Illinois, USA.

 

Methods

 

Patients with confirmed COVID-19 were defined as those with a positive SARS-CoV-2 test. Contacts were people with exposure to a patient with COVID-19 on or after the patient’s symptom onset date. Contacts underwent active symptom monitoring for 14 days following their last exposure. Contacts who developed fever, cough, or shortness of breath became persons under investigation and were tested for SARS-CoV-2. A convenience sample of 32 asymptomatic health-care personnel contacts were also tested.

 

Findings

 

Patient 1—a woman in her 60s—returned from China in mid-January, 2020. One week later, she was hospitalised with pneumonia and tested positive for SARS-CoV-2. Her husband (Patient 2) did not travel but had frequent close contact with his wife. He was admitted 8 days later and tested positive for SARS-CoV-2. Overall, 372 contacts of both cases were identified  ; 347 underwent active symptom monitoring, including 152 community contacts and 195 health-care personnel. Of monitored contacts, 43 became persons under investigation, in addition to Patient 2. These 43 persons under investigation and all 32 asymptomatic health-care personnel tested negative for SARS-CoV-2.

 

Interpretation

 

Person-to-person transmission of SARS-CoV-2 occurred between two people with prolonged, unprotected exposure while Patient 1 was symptomatic. Despite active symptom monitoring and testing of symptomatic and some asymptomatic contacts, no further transmission was detected.

Expand  

 

Posté
  Le 13/03/2020 à 08:30, Rübezahl a dit :

Un site pour le suivi (chiffres et graphiques) https://www.worldometers.info/coronavirus/

Expand  

 

Pour les stats, il y a aussi : https://github.com/CSSEGISandData/COVID-19

Les données sont celles de Johns Hopkins.

 

Et aussi : https://github.com/GuangchuangYu/nCov2019

« An R package and a website with real-time data on the COVID-19 coronavirus outbreak »

 

En python : https://github.com/AaronWard/covid-19-analysis

  • Yea 1
  • Post de référence 1
Posté
  Citation
Adam Kucharski
Mathematician/epidemiologist at @LSHTM. @WellcomeTrust fellow and @TEDFellow. Author of The Rules of Contagion: http://kucharski.io/books/

 

 

I am deeply uncomfortable with the message that UK is actively pursuing ‘herd immunity’ as the main COVID-19 strategy. Our group’s scenario modelling has focused on reducing two main things: peak healthcare demand and deaths... 1/

 

For me, herd immunity has never been the outright aim, it’s been a tragic consequence of having a virus that - based on current evidence - is unlikely to be fully controllable in long term in the UK. 2/

 

Sadly, even large-scale changes (like those other European countries are making, and we may very soon) may not control COVID for long. We must flatten the curve as much as possible, but there could still be many infections (and hence immunity). 3/

 

The communication about COVID science has generally been clear in the UK, but talk of ‘herd immunity as the aim’ is totally wide of the mark. Having large numbers infected isn’t the aim here, even if it may be the outcome. 4/

 

A lot of modellers around the world are working flat out to find best way to minimise impact on population and healthcare. A side effect may end up being herd immunity, but this is merely a consequence of a very tough option - albeit one that may help prevent another outbreak. 5/

 

Clearly we cannot finely tune the path of this outbreak. The best we can do is identify actions that have highest chance of effectively and sustainably reducing impact on the population and burden on NHS. 6/

 

To be clear: we have to reduce impact on UK as much as we can. But we are in this for the long term. A couple of weeks of closed schools and cancelled events won’t solve this - we will have to fundamentally change our lifestyles. 7/

 

Given the seriousness of the situation, we are obviously working to get our latest modelling analysis out in the public domain as soon as we can. 8/8

Expand  

 

Posté
  Le 14/03/2020 à 22:47, Freezbee a dit :

we will have to fundamentally change our lifestyles

Expand  

Et c'est là que je ressens comme un malaise, comme une impression que le gars qui écrit ça a une demi-molle à l'idée de pouvoir imposer plein de trucs à plein de gens.

  • Yea 3
Posté
  Citation

Professor Ian Donald

@iandonald_psych

 

Psychologist:Social & Environmental research; behavioural factors in Anti-Microbial Resistance. Emeritus Professor, University of Liverpool. Typos all my own

 

1. The govt strategy on #Coronavirus is more refined than those used in other countries and potentially very effective. But it is also riskier and based on a number of assumptions. They need to be correct, and the measures they introduce need to work when they are supposed to.

 

2. This all assumes I'm correct in what I think the govt are doing and why. I could be wrong - and wouldn't be surprised. But it looks to me like. . .

 

3. A UK starting assumption is that a high number of the population will inevitably get infected whatever is done – up to 80%. As you can’t stop it, so it is best to manage it.

There are limited health resources so the aim is to manage the flow of the seriously ill to these.

 

4. The Italian model the aims to stop infection. The UKs wants infection BUT of particular categories of people. The aim of the UK is to have as many lower risk people infected as possible. Immune people cannot infect others; the more there are the lower the risk of infection

 

5. That's herd immunity.


Based on this idea, at the moment the govt wants people to get infected, up until hospitals begin to reach capacity. At that they want to reduce, but not stop infection rate. Ideally they balance it so the numbers entering hospital = the number leaving.

 

6. That balance is the big risk.

All the time people are being treated, other mildly ill people are recovering and the population grows a higher percent of immune people who can’t infect. They can also return to work and keep things going normally - and go to the pubs.

 

7.The risk is being able to accurately manage infection flow relative to health case resources. Data on infection rates needs to be accurate, the measures they introduce need to work and at the time they want them to and to the degree they want, or the system is overwhelmed.

 

8. Schools: Kids generally won’t get very ill, so the govt can use them as a tool to infect others when you want to increase infection. When you need to slow infection, that tap can be turned off – at that point they close the schools. Politically risky for them to say this.

 

9. The same for large scale events - stop them when you want to slow infection rates; turn another tap off. This means schools etc are closed for a shorter period and disruption generally is therefore for a shorter period, AND with a growing immune population. This is sustainable

 

10. After a while most of the population is immune, the seriously ill have all received treatment and the country is resistant. The more vulnerable are then less at risk. This is the end state the govt is aiming for and could achieve.

 

11. BUT a key issue during this process is protection of those for whom the virus is fatal. It's not clear the full measures there are to protect those people. It assumes they can measure infection, that their behavioural expectations are met - people do what they think they will

 

12. The Italian (and others) strategy is to stop as much infection as possible - or all infection. This is appealing, but then what? The restrictions are not sustainable for months. So the will need to be relaxed. But that will lead to reemergence of infections.

 

13. Then rates will then start to climb again. So they will have to reintroduce the restrictions each time infection rates rise. That is not a sustainable model and takes much longer to achieve the goal of a largely immune population with low risk of infection of the vulnerable

 

14. As the government tries to achieve equilibrium between hospitalisations and infections, more interventions will appear. It's perhaps why there are at the moment few public information films on staying at home. They are treading a tight path, but possibly a sensible one.

 

15. This is probably the best strategy, but they should explain it more clearly. It relies on a lot of assumptions, so it would be good to know what they are - especially behavioural. Most encouraging, it's way too clever for #BorisJohnson to have had any role in developing.

Expand  

 

  • Yea 1
Posté

Très bel article du Washington Post (mais il faut aller sur leur site pour profiter des animations) :

 

https://www.washingtonpost.com/graphics/2020/world/corona-simulator/

 

  Citation

Pourquoi des épidémies comme celle des coronavirus se propagent de manière exponentielle et comment « aplatir la courbe » ?

Par Harry Stevens 14 mars 2020

 

Après l'annonce du premier cas de covid-19, la maladie causée par la nouvelle souche de coronavirus, aux États-Unis, les rapports faisant état d'autres infections se sont fait attendre. Deux mois plus tard, ce ruissellement s'est transformé en un courant régulier.

 

Screenshot-from-2020-03-15-10-40-51.png

 

Cette courbe dite exponentielle inquiète les experts. Si le nombre de cas devait continuer à doubler tous les trois jours, il y aurait environ cent millions de cas aux États-Unis d'ici le mois de mai.

 

C'est un calcul, pas une prophétie. La propagation peut être ralentie, disent les professionnels de la santé publique, si les gens pratiquent la « distanciation sociale » en évitant les espaces publics et en limitant généralement leurs déplacements.

 

Pourtant, sans aucune mesure pour le ralentir, la covid-19 continuera à se propager de façon exponentielle pendant des mois. Pour comprendre pourquoi, il est instructif de simuler la propagation d'une fausse maladie au sein d'une population.

 

Nous appellerons notre fausse maladie « simulite ». Elle se propage encore plus facilement que la covid-19 : chaque fois qu'une personne saine entre en contact avec une personne malade, la personne saine devient malade elle aussi.

 

Trigo.png

 

Dans une population de seulement cinq personnes, il n'a pas fallu longtemps pour que tout le monde attrape la simulite.

 

Dans la vie réelle, bien sûr, les gens finissent par s'en remettre. Une personne guérie ne peut ni transmettre la simulite à une personne saine, ni retomber malade après avoir été en contact avec une personne malade.

 

index.png

 

Voyons ce qui se passe lorsque la simulite se répand dans une ville de 200 personnes. Nous allons commencer par placer tout le monde dans la ville à un endroit aléatoire, en nous déplaçant à un angle aléatoire, et nous rendrons une personne malade.

 

Remarquez comment la pente de la courbe rouge, qui représente le nombre de personnes malades, augmente rapidement à mesure que la maladie se répand, puis diminue progressivement à mesure que les gens se rétablissent.

 

Screenshot-from-2020-03-15-10-44-52.png

 

Notre ville de simulation est petite - environ la taille de Whittier, en Alaska - de sorte que la simulite a pu se répandre rapidement dans toute la population. Dans un pays comme les États-Unis, avec ses 330 millions d'habitants, la courbe pourrait s'accentuer pendant longtemps avant de commencer à ralentir.

 

En ce qui concerne le véritable covid-19, nous préférerions ralentir la propagation du virus avant qu'il n'infecte une grande partie de la population américaine. Pour ralentir la simulite, essayons de créer une quarantaine forcée, comme celle que le gouvernement chinois a imposée à la province de Hubei, le ground zero du covid-19.

 

Screenshot-from-2020-03-15-10-46-22.png

 

Oups ! Comme les experts de la santé s'y attendent, il s'est avéré impossible de séparer complètement la population malade des personnes en bonne santé.

 

Leana Wen, ancienne commissaire à la santé de la ville de Baltimore, a expliqué au Washington Post, en janvier dernier, l'impraticabilité des quarantaines forcées. « Beaucoup de gens travaillent dans la ville et vivent dans les comtés voisins, et vice versa », a déclaré Wen. « Les gens seraient-ils séparés de leur famille ? Comment toutes les routes seraient-elles bloquées ? Comment les fournitures arriveraient-elles aux habitants ? »

 

Comme l'a dit Lawrence O. Gostin, professeur de droit de la santé mondiale à l'université de Georgetown : « La vérité est que ce genre de verrouillage est très rare et jamais efficace. »

 

Heureusement, il existe d'autres moyens de ralentir une épidémie. Avant tout, les responsables de la santé ont encouragé les gens à éviter les rassemblements publics, à rester chez eux plus souvent et à garder leurs distances avec les autres. Si les gens sont moins mobiles et interagissent moins les uns avec les autres, le virus a moins de chances de se propager.

 

Certaines personnes continueront à sortir. Peut-être ne peuvent-elles pas rester à la maison en raison de leur travail ou d'autres obligations, ou peut-être refusent-elles simplement de tenir compte des avertissements de santé publique. Non seulement ces personnes sont plus susceptibles de tomber malades elles-mêmes, mais elles risquent aussi de propager la simulite.

 

Voyons ce qui se passe lorsqu'un quart de notre population continue à se déplacer tandis que les trois autres quarts adoptent une stratégie de ce que les experts de la santé appellent la « distanciation sociale ».

 

Screenshot-from-2020-03-15-10-48-06.png

 

Une plus grande distance sociale maintient encore plus de personnes en bonne santé, et les gens peuvent être poussés à quitter les lieux publics en leur enlevant leur attrait.

 

« Nous contrôlons le désir d'être dans les lieux publics en fermant les espaces publics. L'Italie est en train de fermer tous ses restaurants. La Chine ferme tout, et nous fermons aussi des choses maintenant », a déclaré Drew Harris, chercheur en santé des populations et professeur adjoint à la faculté de santé publique de l'université Thomas Jefferson. « Réduire les possibilités de se réunir aide les gens à garder une distance sociale ».

 

Pour simuler une plus grande distanciation sociale, au lieu de laisser un quart de la population se déplacer, nous verrons ce qui se passe lorsque nous laissons seulement une personne sur huit se déplacer.

 

Screenshot-from-2020-03-15-10-49-15.png

 

Les quatre simulations que vous venez de voir - une mêlée générale, une tentative de quarantaine, une distanciation sociale modérée et une distanciation sociale importante - étaient aléatoires. Cela signifie que les résultats de chacune d'entre elles étaient uniques à votre lecture de cet article ; si vous faites défiler les simulations vers le haut et les refaites, ou si vous revenez sur cette page plus tard, vos résultats changeront.

 

Même avec des résultats différents, une distanciation sociale modérée sera généralement plus efficace que la tentative de quarantaine, et une distanciation sociale étendue est généralement la plus efficace. Vous trouverez ci-dessous une comparaison de vos résultats.

 

Screenshot-from-2020-03-15-10-50-24.png

 

La simulite n'est pas une covid-19, et ces simulations simplifient considérablement la complexité de la vie réelle. Pourtant, tout comme les simultis se répandent dans les réseaux de balles rebondissantes sur votre écran, la covid-19 se répand dans nos réseaux humains - dans nos pays, nos villes, nos lieux de travail, nos familles. Et, comme une balle qui rebondit sur l'écran, le comportement d'une seule personne peut provoquer des effets d'entraînement qui touchent des personnes éloignées.

 

Sur un point crucial, cependant, ces simulations ne ressemblent en rien à la réalité : Contrairement à la simulite, le covid-19 peut tuer. Bien que le taux de mortalité ne soit pas précisément connu, il est clair que les membres âgés de notre communauté sont les plus exposés au risque de mourir de la covid-19.

 

« Si vous voulez que ce soit plus réaliste », a déclaré M. Harris après avoir vu un aperçu de cette histoire, « certains points devraient disparaître ».

 

Traduit avec www.DeepL.com/Translator (version gratuite)

Expand  

 

  • Yea 6
Posté

@Rübezahl Je n'ai pas réussi à trouver la source de ce graphique, et l'auteur du tweet a déjà attiré mon attention en répandant de fausses nouvelles (ou de façon prématurée). Ça paraît plausible, mais je préfère attendre d'en savoir plus.

 

edit - j'ai trouvé : https://tineye.com/search/e321805411857a273c21fbd379df82752ce8520c?page=1

 

  Citation

The diagrams and figures reported in the following are based on statistics reported by the Korean news agency news1 (screenshot) and the Italian daily newspaper Corriere della Sera

Expand  

 

  Citation

Coronavirus: Why it’s so deadly in Italy
Demographics and why they are a warning to other countries


Andreas Backhaus

Economist. Reader. Writer. Hiker.
Mar 13 · 9 min read

 

As we study the numbers on the coronavirus cases and the deaths related to COVID-19, a similar question comes up again and again:

 

Why is the coronavirus causing so many more deaths in Italy than in other countries?

 

This question relates both to the absolute number of deaths , which is currently exceeded only in China, and to the case fatality rate, which has risen to 6.6% and exceeds any other country in the world.

 

To make sure we are all on the same page: The case fatality rate of COVID-19 is the number of confirmed deaths due to COVID-19 divided by the total number of confirmed cases of infections with the coronavirus SARS-CoV-2. The case fatality rate (CFR) should not be confused with the mortality rate or death rate (while it often is confused with them), which is simply the total number of deaths that occur during a specific time frame divided by the number of the total population at approximately the same time. Currently, we are more interested in the CFR because we see the number of cases growing and we want to know how many of these diagnosed cases will result in the death of the patients. The CFR is currently at 0.066 or 6.6% in Italy, 2.1% in France, 0.8% in South Korea, and 0.2% in Germany, according to the latest data collected by worldometer. What explains these immense differences?

 

  Révéler le contenu masqué

 

Expand  

 

  • Yea 1
  • Post de référence 1
Posté
  Citation

@alison_l_hill

 

a day ago, 7 tweets, 3 min read

 

I’m sharing a simulation tool I put together for studying COVID19 dynamics and generating visualizations without having to do a bunch of coding yourself. Hoping it can help with your coronavirus-related research and teaching. alhill.shinyapps.io/COVID19seir/ (1/7)
 
The app is based on an SEIR epidemic model, adapted to include the different possible clinical stages/outcomes of COVID19 infection. All the math is there for anyone who’s interested, and the code (R) is all open source on Github so feel free to edit to fit your own needs (2/7)
 
ETIKchvWkAMFQBY.jpg
 
The model is parameterized w values taken from the (surprisingly vast) literature - thanks to everyone pumping out the pre-prints! If you don’t like the parameters I chose, no problem - you can interactively change them to anything you like and see how it affects outcomes. (3/7)
 
ETILC62XYAEQ4aa.jpg
 
Having a model that takes into account clinical progression can be useful for a few different things, like understanding the timescale of an outbreak, or estimating the expected # of “unseen” exposed or mild infections for every severe one you do see. (4/7)
 
ETINmuAWAAAOFW8.jpg
 
The app has the option to introduce an intervention, so you can generate your own “flatten the curve” scenarios. You can also see what happens if an intervention is stopped too soon. (5/7)
 
ETIOAmlWoAI_rxs.jpg
 
Another section lets you compare cases of different severity levels to the healthcare resources needed to care for them, such as hospital beds or mechanical ventilators. You’ll see that really strong interventions are needed to keep cases under these capacity thresholds. (6/7)
 
ETIQakBXsAAYgJk.png
 
This is still a work in progress and there are lots of limitations to this “simple” model. It's an ODE so no stochastic extinction. Pre-symptomatic transmission, asymptomatic infection, and superspreading aren't included yet. Feedback and ideas appreciated! (7/7)
Expand  

 

Posté

C'est ce que disait Neomatix il y a quelques pages. L'extreme majorité des victimes du covid serait très probablement mort d'une autre maladie au cours de l'année.

Créer un compte ou se connecter pour commenter

Vous devez être membre afin de pouvoir déposer un commentaire

Créer un compte

Créez un compte sur notre communauté. C’est facile !

Créer un nouveau compte

Se connecter

Vous avez déjà un compte ? Connectez-vous ici.

Connectez-vous maintenant
×
×
  • Créer...