Jump to content

Petits problèmes de math


Recommended Posts

3 hours ago, Kassad said:

J'y arrive en 3.4875 heures

 

  Reveal hidden contents

 

Je trouve 3.50625 avec la même methode.

Tu n'as pas fait une confusion entre 20.625 et 20.75 ?

Link to post
Il y a 3 heures, Kassad a dit :

J'y arrive en 3.4875 heures

 

Peut mieux faire. Du reste, bien que cela ne soit pas formulé très clairement dans l'énoncé, ils arrivent tous les trois ensemble...

 

Il y a 2 heures, L.F. a dit :

Moi je pense que frigo laisse Bisounours faire les 8 derniers km à pied. Probablement qu'il y a eu un désaccord entre eux au sujet de la culture des salades à coup de claques dans les feuilles. 

 

C'est presque ça...

Link to post
il y a 1 minute, Freezbee a dit :

 

Peut mieux faire. Du reste, bien que cela ne soit pas formulé très clairement dans l'énoncé, ils arrivent tous les trois ensemble...

 

 

C'est presque ça...

Oui c'est 9 km en fait...

  • Yea 2
Link to post
  • 1 month later...

Six amis se retrouvent tous les vendredis alignés au comptoir d'un bar. Une fois installés ils ont une coutume pour commencer la soirée : chacun paye une bière à ses deux voisins immédiats (ou à son voisin immédiat pour les deux en bout de file). Combien de semaines faut-il pour que chaque personne paye ainsi exactement une bière à toutes les autres ?

Link to post

Question bonus : et si à la place il s'agit de 5 amis ?

 

C'est une version hautement maquillée d'un problème que j'ai eu au boulot. J'ai trouvé une solution générale pour X amis (dans mon cas le but était aussi de retrouver ces configurations) à coup d'intuition et de bidouillage mais je serais intéressé par une démonstration plus formelle.

Link to post

Raisonnement probabiliste qui évite la combinatoire (et fait l'hypothèse de l'existence de la solution combinatoire, donc ne clôt pas vraiment le problème).

 

Dans une configuration stable, chacun payera en moyenne la même chose. Si n amis, en moyenne, chacun paye à chaque soirée, M=[2*(n-2) + 2]/n bières.

 

On cherche donc S le nombre de semaines tel que chacun aie payé exactement n bières. Soit M*S=n.

 

Donc l'ensemble des n valides doit être inclus dans l'ensemble tel que pour tout n, n^2 est divisible par 2.(n-1) (si j'ai pas plante mes calculs).

 

Donc déjà, l'ensemble des possibles est inclus dans les nombres pairs. Je suis grave certain que cette réponse pouvait être trivialisee en se disant qu'il y a deux personnes en bout de file. Reste plus qu'à imaginer un comptoir de bar en dimension 3.

Link to post
  • 3 weeks later...

Une question les gars, puisque ça a l'air d'être le sujet le plus approprié. 

 

Apprendre à faire des pgm et des ppdc ça sert vraiment à quelque chose ? 

 

J'essaie mais je trouve que ça complique plus les calculs qu'autre chose. Idem avec la décomposition en nombres premiers. Ou alors je rate un truc. 

Link to post

PGM ? et ppdc ?

PGDC et PPMC non ?

PPMC:

Si tu veux pouvoir additionner ou soustraire des fractions tu vas devoir les multiplier par x/x et y/y pour que le dénominateur de la première multiplié par x soit égal au dénominateur de la seconde multiplié par y. En gros tu cherches le ppmc des dénominateurs de chaque fraction. Puis une fois qu'elles ont le même dénominateur tu peux additionner ou soustraire les numérateurs.

 

PGDC:

Simplification de fraction. Si tu veux pas que ton calcul explose après 3 ou 4 opérations. il est quand même bon de simplifier de temps en temps. Aussi pour comprendre les ordre de grandeur on comprend mieux.

Si je te donne la soustraction suivante à faire: 4176/512 - 5/32 et que tu me réponds 4096/512, c'est pas sûr que tu percutes que le résultat vaut 8.

 

Pour du plus concret sur la factorisation en nombre premier.

Toute la crypto a clé publique est basée sur la complexité de décomposer un grand nombre en deux facteurs premiers.

Link to post
On 15/03/2018 at 5:02 PM, NoName said:

 

J'essaie mais je trouve que ça complique plus les calculs qu'autre chose. Idem avec la décomposition en nombres premiers. Ou alors je rate un truc. 

La décomposition en facteurs premiers est à l'arithmétique ce que la génétique est à la biologie. C'est le code ADN des nombres.

 

Sinon une application de la décomposition unique en facteur premier est ... la programmation ! En effet c'est là dessus que repose la démonstration d'incomplétude de Goedel (il donne le codage de toute suite finie d'un ensemble dénombrable de symboles en un unique entier) et in fine reprise par Turing pour montrer l'indécidabilité du problème de l'arrêt (mais le codage de Goedel intervient dans le théorème d'énumération qui permet de voir chaque programme comme un entier). 

  • Yea 3
Link to post
  • 4 weeks later...

Une bijection triviale pour voir que N et N2 ont la même cardinalité est f(a,b) = 2a3b

 

Est-ce qu’il existe une construction du genre pour voir "trivialement" que R et R2 ont la même cardinalité ?

Link to post
5 minutes ago, Sloonz said:

Est-ce qu’il existe une construction du genre pour voir "trivialement" que R et R2 ont la même cardinalité ?

Oui le truc de base est de voir que x |-> x * (pi/2) est une bijection de [0,1[ vers [0,pi/2[ puis arctan qui est une bijection vers [0,+infini[

 

 [Édit] à j'avais pas vu c'est pour R^2. Je crois que Cantor en a donné une mais pas triviale. [/Édit]

Link to post

Hmmm je ne connais pas de construction classique du genre qui soit autre que fractale / constructale (et qui nécessite un dessin d'une courbe qui va de plus en plus tortiller jusqu'à couvrir tout R, ce qui suppose pas mal de propriétés topologiques).

 

J'ai envie de proposer une construction qui permette de faire l'étape la plus dure, une bijection de [0 ; 1[ vers [0 ; 1[^2 (après, on appliquera une transformation qui va bien pour passer du segment / carré à la droite / plan dans son intégralité. On va considérer un nombre dans l'intervalle [0 ; 1[ : il s'écrit donc 0,abcdefghijkl... Et on lui associe deux autres nombres dans le même intervalle, à savoir 0,acegik... et 0,bdfhjl..., composés respectivement des décimales de rang impair et pair du premier nombre. Et paf, ça fait des Chocapic (et mieux encore, des Chocapic différents mais tout aussi valables quelle que soit la base de numération choisie).

 

@Kassad : je parle sous ta haute autorité de mathématicien, n'hésite pas à me dire si je me suis planté quelque part.

  • Yea 2
Link to post

Merci Rincevent.

 

À chaque fois que je me plonge dans un bouquin de maths c’est la même chose, je me pose tellement de questions à la con que je finis par m’auto-embrouiller sur des trucs fondamentaux. En l’occurrence, je suis parti de "courbe elliptiques" à "au fait, tout polynome de degré 3 a-t-il bien trois racines dans C" à "au fait, est-ce qu’il existe une bijection entre les polynomes de degré <= 3 et les polynomes de degré = 3" à "au fait, est-ce que je suis certain que card(R2) = card(R)". Au final, j’ai ouvert le bouquin il y a deux heures et j’ai pas passé la première page…

Link to post
16 hours ago, Rincevent said:

J'ai envie de proposer une construction qui permette de faire l'étape la plus dure, une bijection de [0 ; 1[ vers [0 ; 1[^2 (après, on appliquera une transformation qui va bien pour passer du segment / carré à la droite / plan dans son intégralité. On va considérer un nombre dans l'intervalle [0 ; 1[ : il s'écrit donc 0,abcdefghijkl... Et on lui associe deux autres nombres dans le même intervalle, à savoir 0,acegik... et 0,bdfhjl..., composés respectivement des décimales de rang impair et pair du premier nombre. Et paf, ça fait des Chocapic (et mieux encore, des Chocapic différents mais tout aussi valables quelle que soit la base de numération choisie).

 

Joli.

Link to post
17 hours ago, Rincevent said:

Hmmm je ne connais pas de construction classique du genre qui soit autre que fractale / constructale (et qui nécessite un dessin d'une courbe qui va de plus en plus tortiller jusqu'à couvrir tout R, ce qui suppose pas mal de propriétés topologiques).

 

J'ai envie de proposer une construction qui permette de faire l'étape la plus dure, une bijection de [0 ; 1[ vers [0 ; 1[^2 (après, on appliquera une transformation qui va bien pour passer du segment / carré à la droite / plan dans son intégralité. On va considérer un nombre dans l'intervalle [0 ; 1[ : il s'écrit donc 0,abcdefghijkl... Et on lui associe deux autres nombres dans le même intervalle, à savoir 0,acegik... et 0,bdfhjl..., composés respectivement des décimales de rang impair et pair du premier nombre. Et paf, ça fait des Chocapic (et mieux encore, des Chocapic différents mais tout aussi valables quelle que soit la base de numération choisie).

 

@Kassad : je parle sous ta haute autorité de mathématicien, n'hésite pas à me dire si je me suis planté quelque part.

 

  Oui ça à l'air de marcher mais je suis pas sûr de comment tu établis (faux faire gaffe que tu ne retombes pas une infinité de fois sur le même réel car 0,acegik peut venir d'un autre nombre que 0,abcdefg... par exemple 0,azcyexg... ) que c'est bien une bijection : ça ressemble à la diagonalisation de Cantor.

 

  En fait la preuve qu'il en existe une est plutôt facile par le théorème de Cantor Bernstein : si tu as une injection de A dans B et une de B dans A alors il y a bijection entre les deux. L'injection de R dans R^2 est gratuite, dans l'autre sens tu envoie (0,0) sur 0 et (x,y) on reprend le truc de Rincevent mais à l'envers : si x=0,x1x2x3 et y=0,y1,y2y3 alors on associe 0,x1,y1x2y2x3y3. Ca c'est bien une injection (il doit falloir faire gaffe avec la notation des réels qui finissent avec un nombre infini de 9 car 0,3459999999... est égal à 0,34600000...)

Link to post
il y a 9 minutes, Kassad a dit :

Oui ça à l'air de marcher mais je suis pas sûr de comment tu établis (faux faire gaffe que tu ne retombes pas une infinité de fois sur le même réel car 0,acegik peut venir d'un autre nombre que 0,abcdefg... par exemple 0,azcyexg... ) que c'est bien une bijection : ça ressemble à la diagonalisation de Cantor.

À la limite, on peut affaiblir la démonstration et prouver que c'est seulement une surjection de [0 ; 1[ vers lui-même au carré (la surjection inverse étant gratuite) ; avec une surjection dans les deux sens, on a égalité des cardinaux (ce n'est pas le théorème de Cantor-Bernstein, mais de mémoire ça marche quand même).

Link to post
  • 1 month later...

En combien de temps pouvez vous répondre à cette question ?

 

Un gobelet rempli d'eau coute 1,5 €, l'eau coûte un euro de plus que le gobelet, combien coute le gobelet ?

Link to post
il y a 6 minutes, frigo a dit :

En combien de temps pouvez vous répondre à cette question ?

 

Un gobelet rempli d'eau coute 1,5 €, l'eau coûte un euro de plus que le gobelet, combien coute le gobelet ?

 

15 secondes ?

Link to post

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...